
www.manaraa.com

Teaching Data Structure Design PatternsNatasha Gelfand� Michael T. Goodrichy Roberto Tamassia�Dept. of Comp. Sci. Dept. of Comp. Sci. Dept. of Comp. Sci.Brown Univ. Johns Hopkins Univ. Brown Univ.Providence, RI 02912 Baltimore, MD 21218 Providence, RI 02912ng@cs.brown.edu goodrich@cs.jhu.edu rt@cs.brown.eduAbstract In this paper we present an approachfor teaching the Freshman-Sophomore introductionto data structures course (CS2) in a way that pro-vides an introduction to object-oriented software en-gineering patterns in addition to the theory of datastructures. We survey in this paper several designpatterns and describe how they can be naturally in-tegrated in the CS2 curriculum.1 IntroductionOne of the main advantages of object-oriented de-sign is to encourage well-organized code developmentfor building software that is reusable, robust, andadaptable (e.g., see [2,3,6]). Designing quality object-oriented code takes more than simply understandingthe object-oriented design methodologies, however.It requires the e�ective use of these and other object-oriented techniques in powerful and elegant ways.Design Patterns Software engineering researchersand practitioners are developing sets of organiza-tional concepts for designing quality object-orientedsoftware. These concepts, called design patterns [4],are frameworks that one might follow for producingobject-oriented software that is concise, correct, andreusable. Such patterns are important, but probablyneglected by most instructors in the introduction todata structures course (CS2) and usually not taughtuntil the software engineering course. We brieysurvey several object-oriented design paradigms inthis paper, and we describe how these paradigmscan be consistently integrated into the curriculum�The work of this author is supported by the U.S. ArmyResearch O�ce under grant DAAH04{96{1{0013, and by theNational Science Foundation under grant CCR{9423847.yThe work of this author is supported by the U.S. ArmyResearch O�ce under grant DAAH04{96{1{0013, and by theNational Science Foundation under grant CCR{9625289.

of CS2, teaching students how to design quality im-plementations of data structures. The design pat-terns we discuss include the following: adapters, tem-plate method, comparators, decorators, iterators andenumerations, positions, and locators. Incorporatingthese patterns doesn't require any major revisions tothe CS2 curriculum, for, as we describe below, they�t in naturally with the discussions of several com-ponents of CS2. These patterns apply to a coursetaught in any object-oriented language, we will giveour examples in Java.Related Work Software engineers have used de-sign paradigms, or patterns, for some time now. Evenso, it wasn't until the recent, yet seminal, cata-loging e�ort of the so-called \gang of four," Gammaet al. [4], that the subject of design patterns be-came a topic of study in its own right. The ef-forts of these four, and other software engineering re-searchers, have shown that design patterns can savedevelopment time and result in software that is ro-bust and reusable.At Brown University design patterns have beentaught as early as the the introductory computer sci-ence course (CS1) [7]. The patterns presented in-cluded state, proxy, chain of responsibility, and fac-tory. Most of the patterns we describe in this pa-per are also described in the book by Gamma etal., including adapters, iterators, template methods,and decorators. Other patterns we describe here, in-cluding positions, locators, and comparators, and theway that they can be integrated in the CS2 curricu-lum, are included in the recent book by Goodrich andTamassia [5].In the remainder of this paper we describe thesepatterns and how they can naturally be included inthe CS2 curriculum. We break the patterns into twogroups: those that primarily act on classes and thosethat primarily act on objects.2 Class PatternsMany patterns act on classes. That is, they provideextra capabilities for a class of objects, which thedesigner of that class need not be directly aware of.1

www.manaraa.com

We describe some of these patterns in this section.Adapter The adapter pattern adjusts methodsfrom one class so they can be used to implementmethods of another class. The adaptation is expectedto be a simple one, involving what are essentially one-line method calls to implement each method. Thissometimes also involves not using several of the meth-ods from a more general class. This adaptation iscommonly done in design of data structures when wewant to implement a new data structure in terms ofanother data structure that has a similar functional-ity, but di�erent interface. A natural place to intro-duce this pattern is in the discussion of implementa-tion of stacks, queues, and double-ended queues (ordeques).The adapter pattern can naturally be includedearly in the CS2 curriculum, in the implementationof DequeStack class shown in Code Fragment 1. Thisclass demonstrates how to adapt a deque class so thatit can be used to implement the stack abstract datatype (ADT). That is, if we have an implementationMyDeque of the deque ADT, then we can easily im-plement the Stack interface with the class DequeStackshown in Code Fragment 1. All the methods of De-queStack are essentially one-line calls to methods ofthe Deque interface, with the slight added complica-tion of converting deque exceptions into stack excep-tions.public class DequeStack implements Stack fDeque D; == holds the elements of the stackpublic DequeStack() f D = new MyDeque(); gpublic int size() f return D.size(); gpublic boolean isEmpty() f return D.isEmpty(); gpublic void push(Object obj) f D.insertLast(obj); gpublic Object top() throws StackEmptyException ftry f return D.lastElement(); gcatch (DequeEmptyException err)f throw new StackEmptyException(); ggpublic Object pop() throws StackEmptyException ftry f return D.removeLast(); gcatch (DequeEmptyException err)f throw new StackEmptyException(); gggCode Fragment 1: Implementation of the Stack inter-face by means of a deque.Another useful application of the adapter patternin design of data structures is to specialize the typesof objects that are used by a general class. This allowsus to design general data structures which can storeobjects of any type. We can then make the datastructure type-safe by writing an adapter that only

accepts objects of a certain type and then forwardall calls to the generic class. We can use this kind ofadapter, for example, to de�ne an IntegerArrayStackclass that adapts an array-based ArrayStack class sothat the stack only stores Integer objects. Such aclass can then be used to to avoid the extra typingand possible confusion associated with casting.Template Method Often several algorithms havethe same overall structure but di�er in the actionsthey take at speci�c steps. For example, many al-gorithms have as a base a simple tree traversal, butdi�er in the actions they perform at the nodes of atree. In such cases it is desirable to implement thealgorithm only once and then specialize it for the dif-ferent applications.The design pattern that can be used in such situa-tions is called template method. This pattern providesa class which implements a skeleton of an algorithm,and delegates the steps that will vary in di�erent im-plementations to its subclasses.Template methods can be introduced in CS2 dur-ing the discussion of tree and graph traversals. Wecan generalize di�erent tree traversals, such as pre-order and postorder visit, to one generic visit of thetree, called Euler tour, where we start by going fromthe root towards the left child viewing the edges ofthe tree as being walls that we always keep to ourleft. Each node, therefore, will be encountered threetimes by the Euler tour: from the left, from below,and from the right. Since all algorithms using an Eu-ler tour will have the same general structure, we cande�ne an abstract class BinaryTreeTraversal, shownin Code Fragment 2, which executes the traversal, butdoes not take any speci�c action when it encountersa node. Instead, it calls auxiliary methods which areleft empty in the abstract class, but are de�ned in thesubclasses of the traversal to perform some actions.For example, we can produce preorder and postordertraversals of the tree by performing an action when anode is encountered from the left and from the rightrespectively.An alternative approach to the problem of gen-eralized algorithms is to defer the speci�c actions toseparate objects instead of the subclasses of the ab-stract class and use the strategy pattern [4] insteadof the template method pattern.Comparator Another useful pattern that actsupon a class is the comparator pattern, which is aninstance of a more general strategy pattern. This pat-tern provides a class of objects that are used for com-paring pairs of objects in a totally-ordered container.An alternative approach is to require that objects beable to compare themselves to one another, but there2

www.manaraa.com

public abstract class BinaryTreeTraversal fpublic void traverseNode(Position p) fleft(p);traverseNode(tree.leftChild(p));below(p);traverseNode(tree.rightChild(p));right(p);g== speci�c actions to take will be de�ned hereprotected void left(Position p) fgprotected void below(Position p) fgprotected void right(Position p) fggCode Fragment 2: Generalized Euler tour of a binarytreeare contexts in which this solution is not applicable.Often objects do not need to \know" how they oughtto be compared, or there may be multiple compari-son methods that will add unnecessary complexity tothe interface of those objects. For example, for two-dimensional data, it is not clear whether we shoulduse the �rst coordinate or the second as the primarycomparison value (or some other rule altogether). In-deed, there are several contexts in geometric algo-rithms where we might want to dynamically switchbetween di�erent comparison functions. Thus, thedata structures that need to compare objects shouldnot expect the objects to provide their own compar-ison rules, but instead delegate this task to a com-parator object.Comparators are most naturally introduced inCS2 during the discussion of comparison-based datastructures, such as priority queues and dictionaries.For example, a priority queue Q that is designed withcomparators in mind is initialized with a given com-parator, which is then used by Q to compare twoobjects. We can even imagine the ability for a pri-ority queue to be given a new comparator if the oldone even becomes \out-of date". Thus, a program-mer can write a general priority queue implementa-tion that can work correctly in a wide variety of con-texts (including some the programmer has probablynot even thought about). Formally, a comparator in-terface provides methods, isLess, isLessOrEqual, areE-qual, isGreater, and isGreaterOrEqual. We provide anexample implementation of the Comparator interfacein Code Fragment 3.Decorator The �nal class pattern we discuss inthis section is the decorator pattern. This pattern isused to add extra attributes or \decorations" to ob-jects with a certain interface (one possible interfaceis shown in Code Fragment 4). The use of decora-tors is motivated by the need of some algorithms and

public class Lexicographic implements Comparator f== Assumes Point2D objects have getX() and== getY() methods for coordinates.public boolean isLess(Point2D a, Point2D b) fif (a.getX() == b.getX())return (a.getY() < b.getY());return (a.getX() < b.getX());g== other methods are implemented in a similar fashiongCode Fragment 3: An implementation of the Compara-tor interface for 2-dimensional points.data structures to add extra variables or temporaryscratch data to the objects that will not normallyneed to have such variables.public interface Decorable fpublic void create (Object key, Object value);public Object destroy(Object key);public boolean has(Object key);public void set (Object key, Object value);public Object get(Object key);public Enumeration attributes();gCode Fragment 4: An interface for objects that supportadding decorations. Here key is a reference to the newdecoration.if (v.get(VISITED) == Boolean.FALSE) fv.set(VISITED, Boolean.TRUE);visit(v);gCode Fragment 5: An example of vertex visit in depth-�rst search using a decoration to store whether the vertexhas been explored.Decorators can be introduced in the CS2 curricu-lum in the discussion of balanced binary search treesand graph algorithms. In implementing balanced bi-nary search trees we can use a binary search tree classto implement a balanced tree. However, the nodes ofa binary search tree will have to store extra informa-tion such as a balance factor (for AVL trees) or a colorbit (for red-black trees). Since the nodes of a genericbinary search tree do not have such variables, theycan be provided in the form of decorations. In theimplementation of graph traversal algorithms, suchas depth-�rst search and breadth-�rst search, we canuse the decorator pattern to store temporary infor-mation about whether a certain vertex of a graph hasbeen visited (see Code Fragment 5). The decoratorpattern can be used in conjunction with the positionpattern described in Section 3.3

www.manaraa.com

3 Object PatternsOther patterns act primarily on objects. We describesome of them in this section.Iterator Often we are interested in accessing the el-ements of a collection in certain order, one at a time,without changing the contents of the collection, e.g.to look for a speci�c element or to sum the valuesof all its elements. An iterator is an object-orienteddesign pattern that abstracts the process of scanningthrough a collection of elements, one element at atime, without exposing the underlying implementa-tion of the collection. A typical interface of an it-erator will include methods isDone(), �rstElement(),nextElement(), and currentElement(). This ADT al-lows us to visit each element in a collection in order,keeping track of the \current" element.Iterators can be discussed in the CS2 curriculumas soon as elementary data structures introduced.Java provides the simpli�ed \streamlined" version ofthe iterator pattern in its Enumeration interface. Anytime several objects need to be examined by someclass, they can be given to that class in an enumer-ation. It is often useful to be able to run throughor enumerate all the objects in a particular collec-tion, so it can be useful to require all collections tosupport a method for returning their elements in anenumeration. Some collections, such as trees, are notlinearly ordered, and there may be several di�erentways to enumerate their elements (e.g. preorder andpostorder traversal). Using enumerations to traversecollections does not require knowledge of the internaldetails of how the collection is implemented. For ex-ample, one may wish to write a generic printCollectionmethod, shown in Code Fragment 6, that can printout the contents of a collection of objects.public printCollection(Collection c) fEnumeration enum = c.elements();while (enum.hasMoreElements()) fSystem.out.println(enum.nextElement());ggCode Fragment 6: An example of using an enumera-tion.When it is created, an Iterator or Enumeration ob-ject may or may not be a \snapshot" of the collectionat that time, so it is not a good idea to use iteratorobjects while modifying the contents of a collection.Position In order to abstract and unify the di�er-ent mechanisms for storing elements in various im-plementations of data structures, we introduce theconcept of position in the data structure, which for-

malizes the intuitive notion of \place" of an elementin a collection. A collection then stores its elementsin positions and keeps the positions arranged in somespeci�c order. The Position interface, then, providesmethods for accessing the element stored at that po-sition and the collection that the position belongs to.Some examples of positions are nodes in such datastructures as sequences and trees. Usually, the nodesare a part of the implementation of these data struc-tures and therefore are not visible to the user. In anarray-based implementations of sequences, there areno nodes, so positions are represented by the arrayindices. The position pattern provides a uniform in-terface for di�erent implementations of positions invarious data structures and makes the positions partof the interface of a data structure. For example, wecan provide a method insertAfter(Position p, Object el-ement) in the interface of a sequence that allows us toinsert a new element into the sequence immediatelyafter a given position (node).A big advantage of being able to refer to individ-ual positions is that it allows us to perform severaloperations on collections more e�ciently. For exam-ple, given an implementation of a doubly linked listwith nodes that have next and prev pointers, we caninsert an arbitrary node v in O(1) time, provided weare given a reference to the node preceding (or follow-ing) v. We can just \link in" the node new by updat-ing its next and prev references, as well as those ofits neighbors. Some possible places in the CS2 wherepositions can be introduced include the discussions ofsequences and binary trees, where positions abstractthe concept of nodes, and discussion of graphs wherepositions represent vertices and edges. Positions canbe used in conjunction with the decorator patterndiscussed in Section 2, since positions are the objectsto which decorations can be added (in fact Positioninterface can extend Decorable). Not all data struc-tures support a natural notion of position, however,and for those structures we can use the pattern wediscuss next.Locator The Position interface, described above,allows us to identify a speci�c \place" that canstore an element. The element at some positioncan change, but the position stays the same. How-ever, just having positions is not enough. When dis-cussing in CS2 priority queues, dictionaries, and (in afast-paced course) Dijkstra's shortest path algorithm,there are applications where one needs to keep trackof elements as they are being moved from position toposition inside a collection. In order to keep track ofthe location of each such object in an object-orientedmanner, we need an abstraction of \location" that fol-4

www.manaraa.com

lows an element around, rather than being associatedwith a �xed position. This need is particularly impor-tant for data structures where there is no real conceptof \positions" in the structure (e.g., key-based struc-tures). A simple design pattern that ful�lls this needis the locator.The Locator interface is a simple ADT that ab-stracts the location of a speci�c element in a collec-tion. A locator \sticks" with is associated elementas long as that element remains in the collection,i.e., a locator remains valid until its associated ele-ment is removed or replaced. Like the Position ADT,the Locator ADT supports a method for returningits element. Even though they both support such amethod, the Locator and Position interfaces are ac-tually complements of each other: a Locator objectstays with a speci�c element, even if it changes fromposition to position, and a Position object stays witha speci�c position, even if it changes the elements itholds. A locator is therefore like a coat check: wecan give our coat to a coat room attendant, and wereceive back a coat check, which is a \locator" forour coat. The position of our coat relative to theother coats can change, as other coats are added andremoved, but our coat check can always be used toretrieve our coat. Like a coat check, then, we cannow imagine getting something back when we insertan element into a collection: we can get back a loca-tor to that element. This in turn can then be used toprovide quick access to the position of this element inthe collection, to say, remove this element or replaceit with another element.We can use locators in a very natural way inthe context of a priority queue. A locator in sucha scenario stays attached to an element inserted inthe priority queue and allows us to refer to the ele-ment and its key in a generic manner that is indepen-dent from the speci�c implementation of the priorityqueue. This ability is important for a priority queueimplementation, for there are no positions per se ina priority queue, since we do not refer to elements orkeys by any notions of \rank," \index," or \node."By using locators, we can de�ne methods for a prior-ity queueQ that refer to elements stored inQ in a waythat abstracts from the speci�c implementation of Q.Such methods include remove(`), which removes theelement with locator `, and replaceKey(`; k), whichchanges to k the priority of the element with loca-tor `. For example, Code Fragment 7, shows twofragments from an implementation of Dijkstra's al-gorithm in Java. The �rst fragment inserts a vertexu into a priority queue Q, using u's distance as itskey, and associates with u the locator returned by Q(e.g., storing the locator as a decoration of u). The

second fragment shows the relaxation of edge (u; z),and the update of the priority of vertex z in Q, whichis performed with operation replaceKey.Locator u loc = Q.insert(new Integer(u dist), u);setLocator(u, u loc);. . .if (u dist + e weight < z dist) == relaxationQ.replaceKey(z loc, new Integer(u dist + e weight));Code Fragment 7: Fragments from the implementationof Dijkstra's algorithm4 ConclusionIn this paper we survey a number of useful object-oriented software design patterns and describe natu-ral places where they can be introduced in the stan-dard curriculum for the Freshman-Sophomore datastructures course (CS2). We summarize our sugges-tions in Table 1. We feel that introducing such designprinciples early in the computer science curriculumhelps students form a framework for engineering soft-ware that will complement the theoretical foundationthey receive in CS2.Design Pattern CS2 Topicadapters stacks and queuestemplate methods tree and graph traversalscomparators priority queuesdecorators balanced trees, graphsiterators sequences, trees, graphspositions sequences, binary trees, graphslocators priority queues, dictionariesTable 1: Some design patterns and natural places in theCS2 curriculum where they can be introduced.References[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. DataStructures and Algorithms. Addison-Wesley, 1983.[2] G. Booch. Object-Oriented Analysis and Design withApplications. Benjamin/Cummings, 1994.[3] T. Budd. An Introduction to Object-Oriented Pro-gramming. Addison-Wesley, 1991.[4] E. Gamma, R. Helm, R. Johnson, and J. Vlis-sides. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.[5] M. T. Goodrich and R. Tamassia. Data Structuresand Algorithms in Java. John Wiley and Sons, 1997.[6] B. Liskov and J. Guttag. Abstraction and Speci�cationin Program Development. The MIT Press/McGraw-Hill, 1986.[7] Computer Science 15 Homepage, Brown University.http://www.cs.brown.edu/courses/cs0155

